
Настоящий каталог предлагает ознакомление заказчика с общими сведениями о двухконцевых трубчатых электронагревателях круглого сечения общего назначения вида климатического исполнения УХЛ4 по <u>ГОСТ 15150-69</u>, для промышленных установок, осуществляющих нагрев различных сред путем излучения, конвекции или теплопроводности.

Настоящий каталог предлагает ознакомление заказчика с электронагревателями изготовляемых на предприятии ОАО ТЭН и в помощь заказчику для оформления заявки.

#### 1.ОБЩИЕ СВЕДЕНИЯ ИЗ ГОСТ 13268-88

1.1. **Трубчатый электронагреватель (ТЭН)** - электрический нагреватель сопротивления, состоящий из нагревательного элемента, имеющего на концах контактные стержни, запрессованного вместе с наполнителем в металлическую оболочку в соответствии с чертежом.



1 - оболочка; 2 - контактный стержень; 3 - нагревательный элемент; 4 - наполнитель; 5 - герметизирующий

материал; 6 - контактные гайки и шайбы; 7 - изолятор; - развернутая длина трубы; - активная длина;

- номинальная длина контактных стержней ТЭН в заделке; - диаметр уплотненного ТЭН; - длина пути утечки тока.

Примечание. Изоляторы, узел герметизации и контактные устройства могут иметь конструктивное исполнение, отличающееся от указанного на чертеже.

- 1.2. Нагревательный элемент металлический проводник, выполненный из сплава с высоким удельным сопротивлением.
- 1.3. **Наполнитель** уплотненный изолирующий материал, окружающий электронагревательный элемент.
- 1.4. **Герметизация торцов** заполнение торцов ТЭН материалом, обеспечивающим защиту наполнителя от влияния на него влаги.
- 1.5. **Контактный стержень** токоведущая металлическая деталь, служащая для подключения ТЭН к сети питания.
- 1.6. Активная длина часть ТЭН, в которой размещается нагревательный элемент.
- 1.7. Активная поверхность поверхность ТЭН на его активной длине.
- 1.8. Развернутая длина сумма длин прямолинейных и изогнутых участков ТЭН.
- 1.9. **Удельная поверхностная мощность ТЭН** мощность, приходящаяся на 1 см активной поверхности.
- 1.10. **Сопротивление изоляции ТЭН** электрическое сопротивление изоляционного материала, измеренное между токоведущими частями и металлической оболочкой.
- 1.11. **Условия нормальной эксплуатации** условия работы, для которых предназначен конкретный тип ТЭН.

- 1.12. Условия нормальной теплоотдачи условия теплоотдачи, когда ТЭН работает в нормальных условиях эксплуатации.
- 1.13. Рабочая температура температура на активной части оболочки ТЭН, которая возникает при эксплуатации в условиях нормальной теплоотдачи при нормальных напряжениях.
- 1.14. **Холодное состояние ТЭН** термическое состояние, при котором температура любой части ТЭН отличается не более чем на 3 °C от температуры окружающей среды.
- 1.15. **Установившийся режим** состояние, при котором превышение температуры ТЭН или его части в течение 30 мин изменяется не более чем на 3 °C или на 2,5% в зависимости от того, что больше.
- 1.16. **Горячее (рабочее) состояние ТЭН** состояние ТЭН при установившемся режиме в условиях нормальной теплоотдачи.
- 1.17. Номинальная потребляемая мощность ТЭН мощность, потребляемая ТЭН в условиях нормальной теплоотдачи при рабочей температуре, указанная изготовителем на изделии.
- 1.18. Ток утечки ток, который протекает от токоведущих частей через изоляцию к оболочке ТЭН.
- 1.19. **Выход из строя ТЭН** состояние, при котором ТЭН не выполняет свою функцию или становится опасным при работе.

#### 2. ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ

2.1. ТЭН должны изготовляться на следующие номинальные напряжения 12; 24; 36; 42; 48; 60; 127; 220; 380 В

По согласованию между изготовителем и потребителем допускается изготавливать ТЭН на другие номинальные напряжения.

- 2.2. ТЭН должны изготовляться с развернутыми длинами от 250 до 6300 мм, выбираемыми из ряда
- 2.3. ТЭН рекомендуется изготовлять на номинальные потребляемые мощности, выбираемые из ряда:
- 0,10; 0,12; 0,16; 0,20; 0,25; 0,32; 0,40; 0,50; 0,63; 0,80; 1,00; 1,25; 1,50; 1,60; 2,00; 2,50; 3,00; 3,15; 3,50;
- 4,00; 5,00; 6,30; 8,00; 10,00; 12,00; 12,50; 16,00; 20,00 и 25,00 кВт. или другие по предложению заказчика
- 2.4. Номинальные длины контактных стержней в заделке и соответствующие им условные обозначения должны соответствовать указанным в таблице

| Номинальная длина контактных | 40 | 65 | 100 | 125 | 160 | 250 | 400 | 630 |
|------------------------------|----|----|-----|-----|-----|-----|-----|-----|
| стержней в заделке, мм       |    |    |     |     |     |     |     |     |
| Условное обозначение         | A  | В  | С   | D   | Е   | F   | G   | Н   |

По согласованию изготовителя с потребителем допускаются другие номинальные длины контактных стержней в заделке.

2.5. Диаметры ТЭН и их предельные отклонения должны соответствовать указанным в таблице

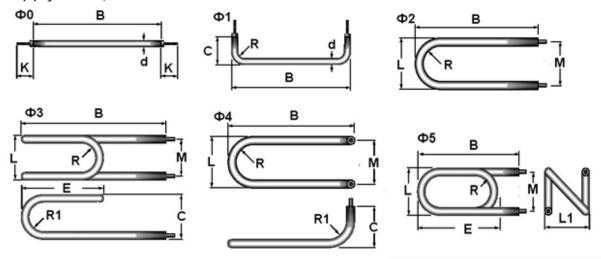
| Номинальный диаметр    | Пред. откл. |
|------------------------|-------------|
| 6,5;7,4; 8,0; 8,5;10,0 | +0,3; -0,1  |
| 13,0; 16,0             | +0,4; -0,2  |

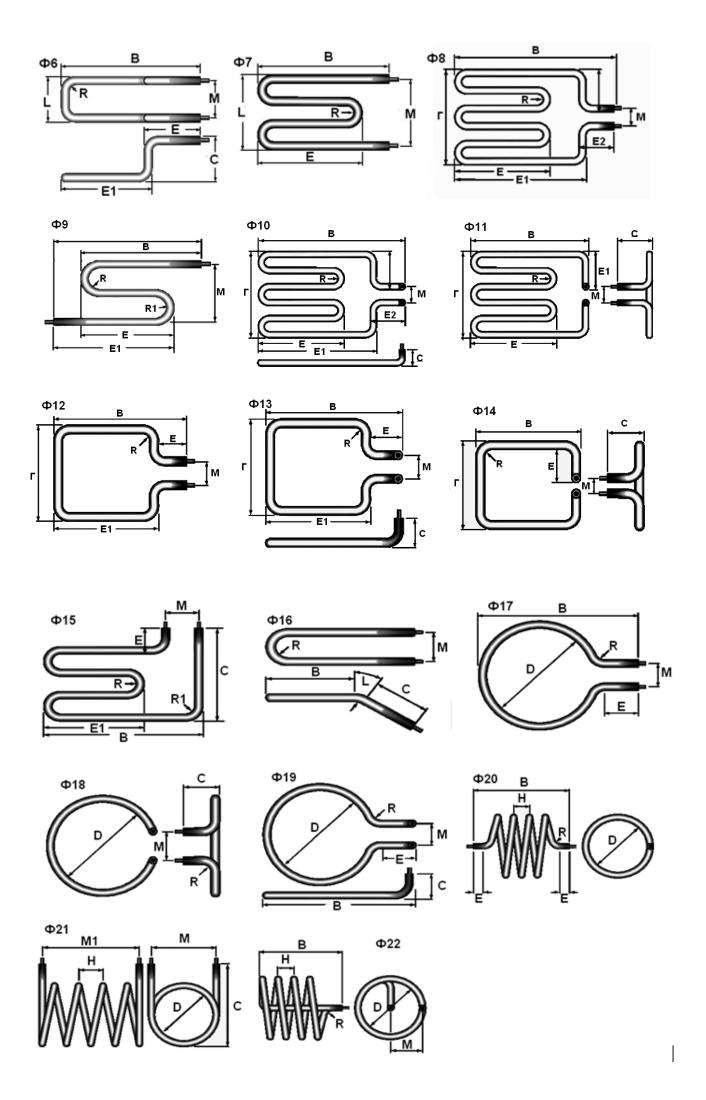
Для ТЭН с двойной оболочкой ном. диаметр 18,5,

Для ТЭН с оболочкой из фторопласта ном. диаметр 12,

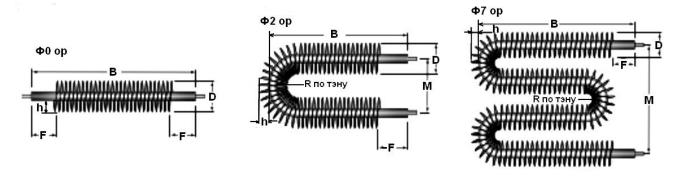
2.7. Пример условного обозначения в документации ТЭН с развернутой длиной 250 мм, длиной контактного стержня в заделке 40 мм, диаметром 10 мм, потребляемой мощностью 0,25 кВт, для нагрева воды, на номинальное напряжение 127 В:

*ТЭН-25А10/0,25J127* ГОСТ 13268-88

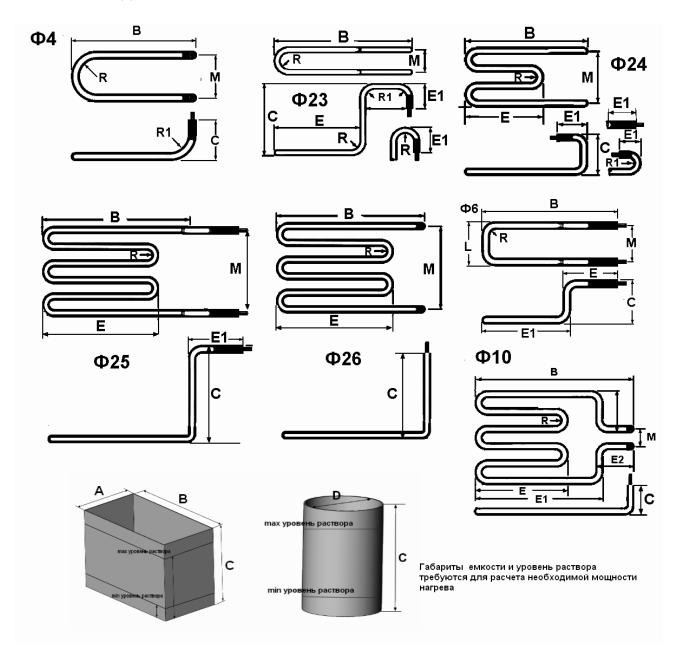

# 3. Характерные случаи применения ТЭН и удельные поверхностные мощности в зависимости от условий эксплуатации и материала оболочки приведены в таблице


| Условное    | Нагреваемая среда     | Характер нагрева         | Удельная   | Материал          |
|-------------|-----------------------|--------------------------|------------|-------------------|
| обозначение |                       |                          | мощность,  | оболочки ТЭН      |
| нагреваемой |                       |                          | Вт/см , не |                   |
| среды       |                       |                          | более      |                   |
| X           | Вода, слабый раствор  | Нагревание, кипячение с  | 9,0        | Медь и латунь (с  |
|             | щелочей и кислот      | максимальной             |            | покрытиями)       |
|             | (рН от 5 до 9)        | температурой на          |            |                   |
|             |                       | оболочке 100 °C          |            |                   |
| J           | Вода, слабый раствор  | То же                    | 15,0       | Нержавеющая       |
|             | кислот (рН от 5 до 7) |                          |            | жаростойкая сталь |
| P           | Вода, слабый раствор  | "                        | 15,0       | Углеродистая      |
|             | щелочей (рН от 7 до   |                          |            | сталь             |
|             | 9)                    |                          |            |                   |
| Q           | Вода, слабый раствор  | "                        | 9,5        | Алюминиевые       |
|             | кислот (рН от 5 до 7) |                          |            | сплавы            |
| S           | Воздух и пр. газы и   | Нагрев в спокойной       | 2,2        | Углеродистая      |
|             | смеси газов           | газовой среде до рабочей |            | сталь             |
|             |                       | температуры на оболочке  |            |                   |
|             |                       | ТЭН 450 °С               |            |                   |
| T           | Воздух и пр. газы и   | Нагрев в спокойной       | 5,0        | Нержавеющая       |
|             | смеси газов           | газовой среде с          |            | жаропрочная сталь |
|             |                       | температурой на          |            |                   |
|             |                       | оболочке ТЭН св. 450 °C  |            |                   |
| О           | То же                 | Нагрев в среде с         | 5,5        | Углеродистая      |
|             |                       | движущимся со            |            | сталь             |
|             |                       | скоростью 6 м/с воздухом |            |                   |
|             |                       | до рабочей температуры   |            |                   |
|             |                       | на оболочке ТЭН 450 °C   |            |                   |
| K           | То же                 | Нагрев в среде с         | 6,5        | Нержавеющая       |
|             |                       | движущимся со            |            | жаростойкая сталь |
|             |                       | скоростью не менее 6 м/с |            |                   |
|             |                       | воздухом, с рабочей      |            |                   |
|             |                       | температурой на          |            |                   |
|             |                       | оболочке ТЭН св. 450 °C  |            |                   |
| R           |                       | Нагрев в среде с         | 3,5        | Углеродистая      |
|             |                       | движущимся со            |            | сталь             |
|             |                       | скоростью менее 6 м/с    |            |                   |
|             |                       | воздухом до рабочей      |            |                   |
|             |                       | температуры на оболочке  |            |                   |
| ът          | D                     | ТЭН 450 °С               | F 1        | 11                |
| N           | Воздух и пр. газы и   | Нагрев в среде с         | 5,1        | Нержавеющая       |
|             | смеси газов           | движущимся со            |            | жаростойкая сталь |
|             |                       | скоростью менее 6 м/с    |            |                   |
|             |                       | воздухом, с рабочей      |            |                   |

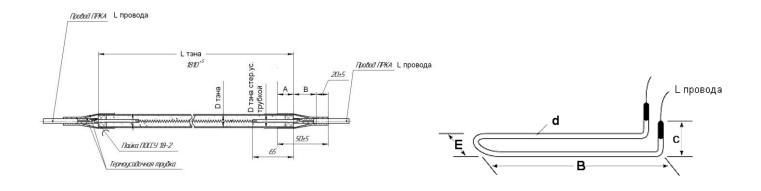
|     |                  | температурой на оболочке ТЭН св. 450 °C |      |                       |
|-----|------------------|-----------------------------------------|------|-----------------------|
| Z/z | Жиры, масла      | Нагрев в ваннах и др.                   | 3,0  | Углеродистая /        |
|     |                  | емкостях                                |      | нержавеющая           |
|     |                  |                                         |      | сталь                 |
| V/v | Щелочь, щелочно- | Нагрев и плавление в                    | 3,5  | То же                 |
|     | селитровая смесь | ваннах и др. емкостях с                 |      |                       |
|     |                  | рабочей температурой на                 |      |                       |
|     |                  | оболочке ТЭН до 600 °C                  |      |                       |
| W   | Легкоплавкие     | То же, с рабочей                        | 3,5  | "                     |
|     | металлы: олово,  | температурой на                         |      |                       |
|     | свинец и др.     | оболочке ТЭН до 450°С                   |      |                       |
| L/l | Литейные формы,  | ТЭН вставлены в                         | 5,0  | "                     |
|     | пресс-формы      | отверстия. Имеется                      |      |                       |
|     |                  | гарантированный контакт                 |      |                       |
|     |                  | с нагреваемым металлом.                 |      |                       |
|     |                  | Нагрев с рабочей                        |      |                       |
|     |                  | температурой на                         |      |                       |
|     |                  | оболочке ТЭН до 450 °C                  |      |                       |
| Y/y | Металлические    | ТЭН залиты в изделия.                   | 13,0 | "                     |
|     | плиты из         | Работа с                                |      |                       |
|     | алюминиевых      | термоограничителями с                   |      |                       |
|     | сплавов          | рабочей температурой на                 |      |                       |
|     |                  | оболочке ТЭН до 320 °C                  |      |                       |
| D   | Селитра (двойная | Нагрев до температуры                   | 3,5  | Углеродистая          |
|     | оболочка)        | 600°C                                   |      | сталь или             |
|     |                  |                                         |      | нержавеющая           |
|     |                  |                                         |      | сверху<br>Нержавеющая |
|     |                  |                                         |      | Пермавеющая           |
|     |                  |                                         |      |                       |

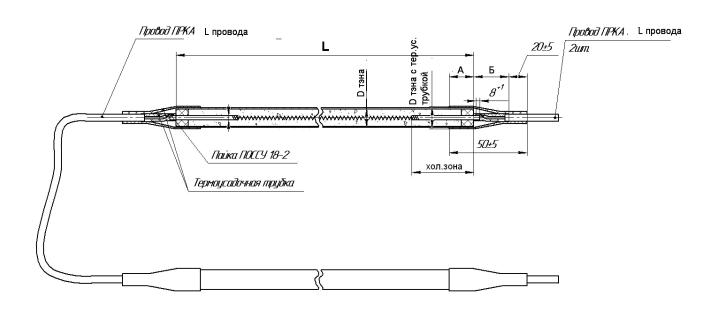

## 4. Некоторые примеры формы нагревателей исполняемых на ОАО ТЭН и их назначение

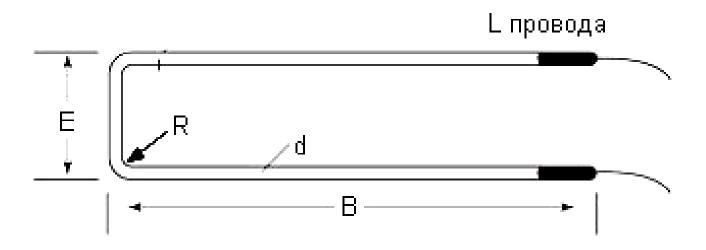
## 4.1 Двухконцевые ТЭН





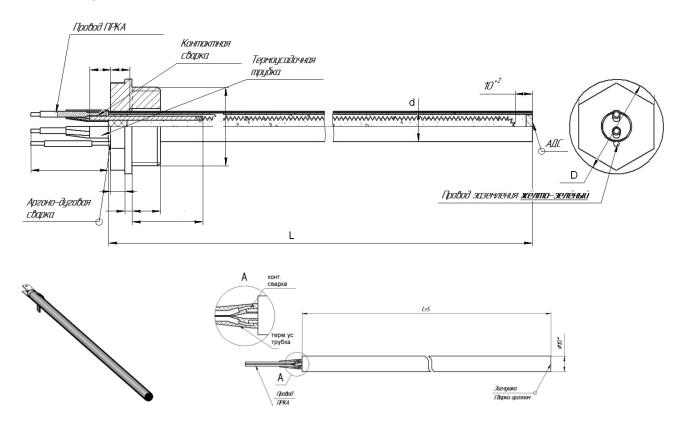


## 4.2 Оребренные ТЭН



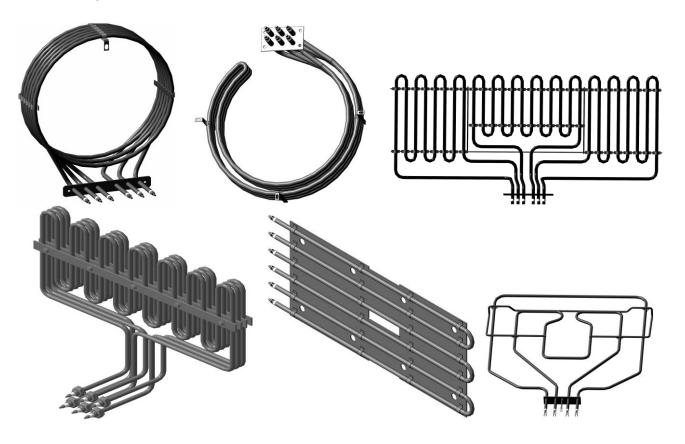


### 4.3 ТЭН для гальванических ванн



## 4.4 ТЭН для оттайки испарителей

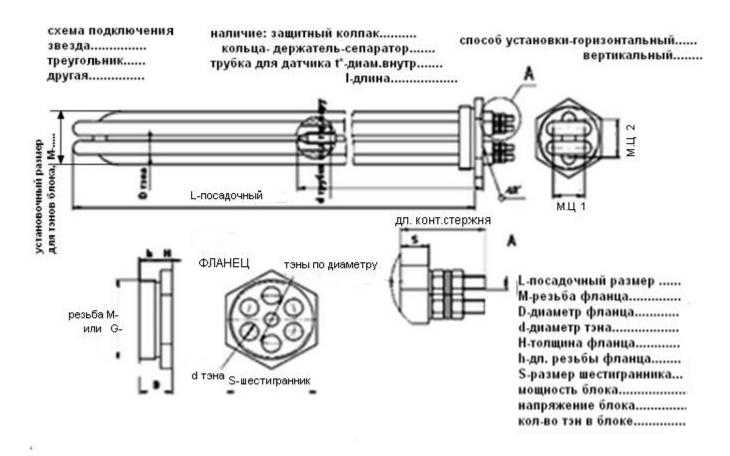




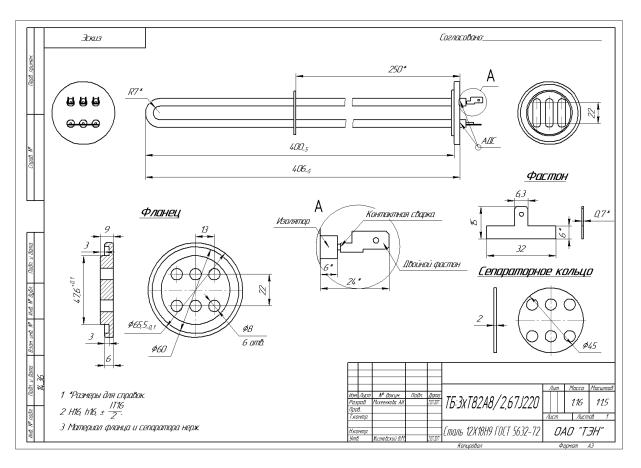



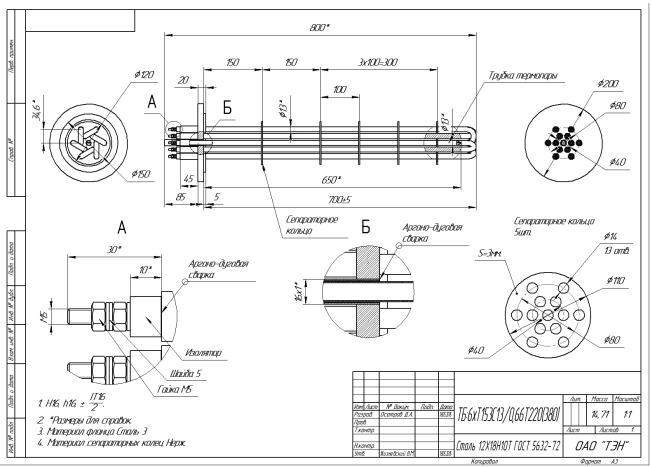

## 5. Конструкции нагревателей, исполняемых на ОАО «ТЭН»

## 5.1 Патронный ТЭН




## 5.2 Сборки-секции ТЭН

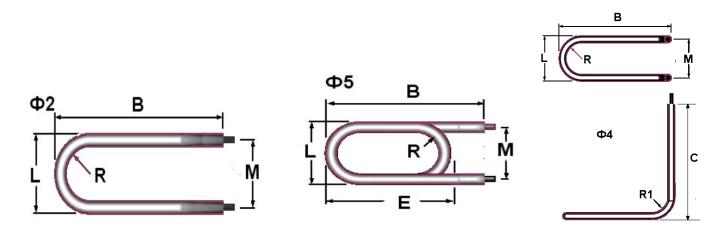




#### 5.3 Блоки ТЭН

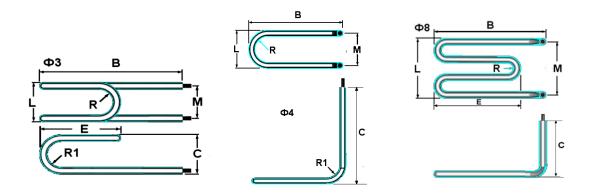




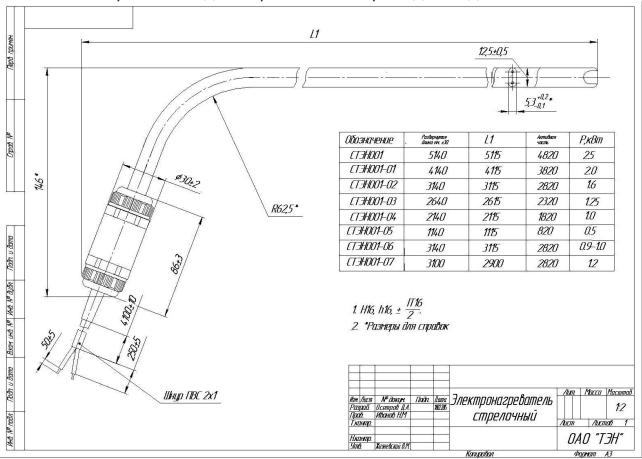




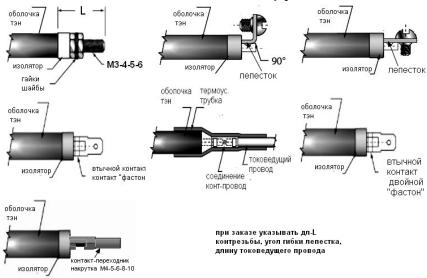


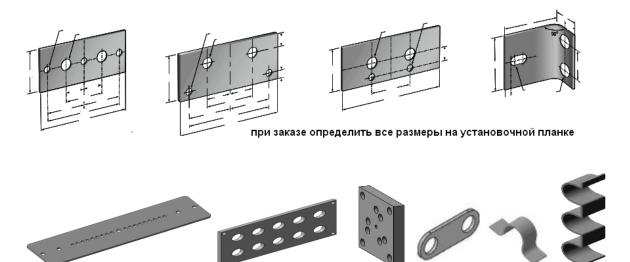

#### 5.4 ТЭН с двойной оболочкой


Внутренний ТЭН – оболочка сталь, нержавеющая сталь Наружная оболочка – нержавеющая сталь. Диаметр ТЭН – 18,5 мм; Радиус гибки R – не менее 30 мм

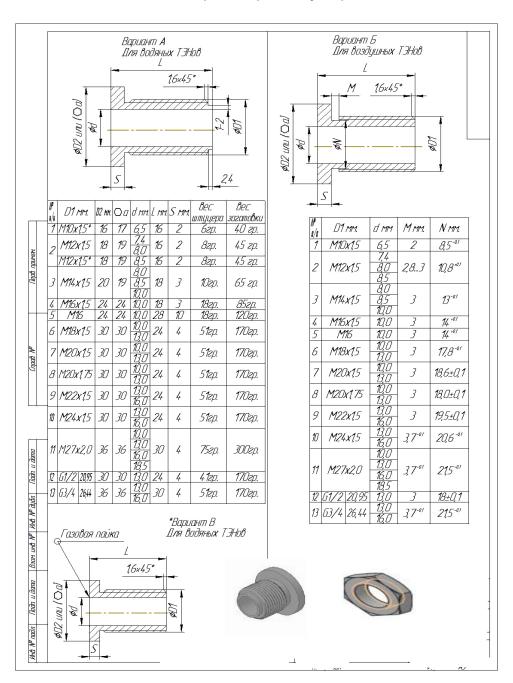



5. 5 ТЭН с оболочкой из фторопласта Внутренний тэн – нержавеющая сталь Наружная оболочка – фторопласт Диаметр ТЭН – 12 мм; Радиус гибки R – не менее 30 мм

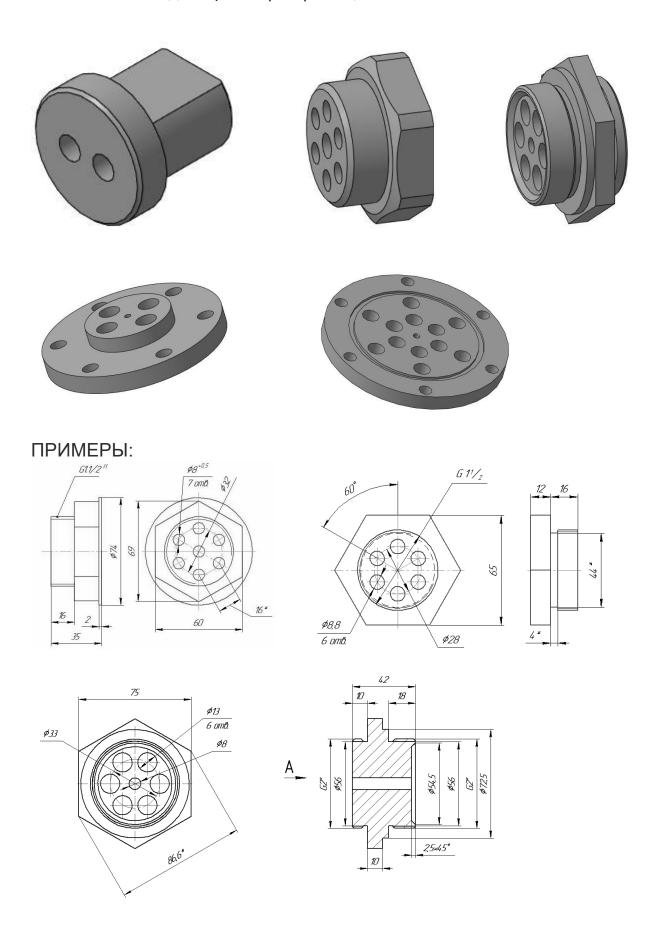


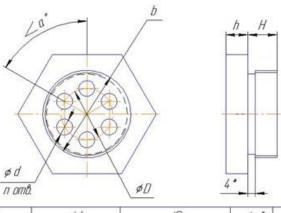

## 5.6 СТЭН-нагреватели для стрелочных переводов ж/д




## 6. Основные виды контактной группы ТЭН




#### 7. Примеры крепежных элементов ТЭН.




#### 8. Основные виды и размеры штуцеров ТЭН



## 9. Основные виды и размеры фланцев ТЭН





| b      | П |   | ød | - 0 |      | øD  |      | ∠a°  | h   | Н    |
|--------|---|---|----|-----|------|-----|------|------|-----|------|
| G1"    | 2 | 8 | 10 | 13  | 14,5 | -   | - )  | 180° | -   | -    |
| 61"    | 4 | 8 | 10 | 13  | 14,5 | 870 | -01  | 90°  | -   | 15-  |
| 61"    | 6 | 8 | 10 | 13  | =    | -   | 70   | 70   | -   | -    |
| 611/4" | 2 | 8 | 10 | 13  | 24   | 22  | 1.00 | 180° | _   | 22   |
| 611/4" | 4 | 8 | 10 | 13  | 24   | 22  | -    | 90°  | -   | =    |
| 611/4" | 6 | 8 | 10 | 13  | 24   |     | -    | 60°  | -   | -    |
| 611/2" | 2 | 8 | 10 | 13  | 28   | 28  | -    | 180° | 175 | - 75 |
| 611/2" | 4 | 8 | 10 | 13  | 28   | 28  | 57   | 90°  | 529 | =    |
| 611/2" | 6 | 8 | 10 | 13  | 28   | 28  | 2    | 60°  | -   | В    |
| 62"    | 2 | 8 | 10 | 13  | 40   | 40  | 36   | 180° | -   | -    |
| 62"    | 4 | 8 | 10 | 13  | 40   | 40  | 36   | 90°  | -   |      |
| 62"    | 6 | 8 | 10 | 13  | 40   | 40  | 36   | 60°  | -   | =    |
| 621/2" | 2 | 8 | 10 | 13  | 56   | 56  | 52   | 180° | -2  | 1    |
| 621/2" | 4 | 8 | 10 | 13  | 56   | 56  | 52   | 90°  |     | 170  |
| 621/2" | 6 | 8 | 10 | 13  | 56   | 56  | 52   | 60°  | -   | -    |

#### 10. ВАЖНОЕ ДЛЯ ПОТРЕБИТЕЛЯ

- 10.1. Оболочка ТЭН должна быть герметична.
- 10.2. Оболочка ТЭН, работающего в агрессивных средах, должна обеспечить стойкость к воздействующей среде.
- 10.3. Торцы ТЭН должны быть защищены от проникновения атмосферной влаги в наполнитель.
- 9.4. Торцы ТЭН, предназначенных для работы при напряжении св. 48 В, должны оснащаться изоляторами, обеспечивающими отсутствие поверхностного разряда.
- 10.5. Отклонение потребляемой мощности ТЭН при номинальном напряжении не должно

превышать % от номинальной потребляемой мощности для ТЭН с активным сопротивлением св. 10 Ом и ±10% для ТЭН с активным сопротивлением менее 10 Ом.

- 10.6. ТЭН по всей активной длине должен иметь температуру на прямых участках оболочки, не отличающуюся от рабочей более чем на ±10%, а на изогнутых участках более чем на ±15%.
- 10.7. Сопротивление изоляции ТЭН в холодном состоянии должно быть не менее 0,5 МОм, а при приемо-сдаточных испытаниях на заводе-изготовителе не менее 50 МОм.

Перед эксплуатацией ТЭН проверяют сопротивление изоляции (при его падении ниже 0,5 МОм ТЭН следует просушить при температуре 120-150 °C в течение 4-6 ч)

- 10.8. Изоляция ТЭН для номинальных напряжений от 127 да 380 В в горячем состоянии должна выдерживать испытательное напряжение частотой 50 Гц, равное 1000 В; для номинальных напряжений от 12 до 60 В равное 500 В.
- 10.9 Требования к безопасности конструкции ТЭН в составе комплектуемого изделия по <u>ГОСТ</u> 12.2.007.0-75.